

NRU-52S **Ouick Installation Guide**

🖄 Warning

- · Only qualified service personnel should install and service this product to avoid injury.
- Observe all ESD procedures during installation to avoid damaging the equipment.

1 Preparing tools

Unpack the equipment and make sure the following tools are available and delivered contents are correct before you begin the installation procedure.

1-1. User-provided tools

Anti-static wrist wrap

1-2. Packing List

Item	Description			
01	NRU-52S system	1		
02	3-pin pluggable terminal block	1		

The force recovery button is reserved for engineering or system reflash purposes.

Please follow the below steps to boot NRU-52S into recovery mode for reflash:

- 1. Make sure the ignition power mode is set to 0.
- 2. Make sure the system has powered down.
- 3. Press and hold down the force recovery button.
- 4. Simultaneously press the power button.
- 5. After 5 seconds, release the force recovery button.

6. The NRU-52S has booted into force recovery mode and can be reflashed via the microUSB cable.

3-pin DC Terminal Block

ignition signal input (IGN).

Warning

6 Micro SIM Slot

The Micro SIM slot can be coupled with the M.2 B key and five antenna holes for 4G LTE or 5G NR module expansion.

6 MicroSD Slot

Compatible with standard MicroSD card, the front-accessible slot allows for easy data storage access or swap the MicroSD card.

7 DisplayPort

8 USB3, 1 Gen1

The system offers two USB3.1 Gen1(SuperSpeed USB) ports on its front panel. They are backward compatible with USB 2.0, USB 1.1 and USB 1.0 devices.

The system allows an 8 to 35V DC power input from via a 3-pin pluggable terminal block. The screw clamping mechanism is a reliable way to wire DC power. In addition to DC power, this terminal block also accepts

Please make sure the voltage of DC power is correct before you connect it to the system. Supplying a voltage over 35V will damage the system.

The system has a DisplayPort (DP) output which is a digital display interface that mainly connect video source and carry audio to a display device. When connecting a DP, it can deliver up to 4K UHD (3840 x 2160 @ 30Hz) in resolution. The system is designed to support active DP adapter/ cable from NVIDIA's recommended display adapters. You may refer to NVIDIA's page to find more information:

(https://nvidia.custhelp.com/app/answers/detail/a_id/4449/~/nvidiarecommended-display-adapter)

₹

CAN bus is a robust industrial bus with a pair of differential signals and is commonly used in various industrial and in-vehicles applications. The system is equipped with a CAN bus DB9 port that is compatible with both industrial and in-vehicle applications. The CAN bus port supports CAN2.0A and CAN2.0B up to 1Mbps.

Pin No.	Definition	I/O	Description
1	GND	-	GND
2	Reserved	×	Reserved pin. Keep unconnected
3	CAN_H	I/O	CAN Bus High-level voltage
4	Reserved		Reserved pin. Keep unconnected
5	CAN_L	I/O	CAN Bus Low-level voltage
6	Reserved	-	Reserved pin. Keep unconnected
7	Reserved	1.57	Reserved pin. Keep unconnected
8	Reserved	12	Reserved pin. Keep unconnected
9	Reserved	-	Reserved pin. Keep unconnected

There are three LED indicators on the front panel: IGN, OS and PWR. The descriptions of these LEDs are listed in the following table.

Indicator	Color	Description
IGN	Yellow	Ignition power control, lit when IGN signal is applied.
OS	Red	Lit when Xavier NX is powered on, and booted into device tree
PWR	Green	Power indicator, lit when the PCBA is powered on

Reserved for system maintenance only.

The COM port is a hardware configurable RS-232/RS-422/RS-485 port. By default, the port is set up as an RS-232 port. To set up the port for RS-422/ 485 operations, please refer to the user manual.

COM Port Definition

Pin#	RS-232 Mode	RS-422 Mode	RS-485 Mode (Two-wire 485)
1			
2	RX	TXD+	TXD+/RXD+
3	ТХ	RXD+	
4		RXD-	
5	GND	GND	GND
6			
7			
8		TXD-	TXD-/RXD-
9			

The power button is a non-latched switch for ATX mode on/off operation. Press to turn on the system, PWR LED should light up and to turn off, you can either issue a shutdown command in the OS, or just press the power button. In case of system halts, you can press and hold the power button for 5 seconds to force-shutdown the system. Please note that there is a 5 seconds interval between two on/off operations (i.e. once turning off the system, you will need to wait for 5 seconds to initiate another power-on operation).

	() () () () () () () () () () () () () (
	D
No.	Item
1	DIO & C
2	<u>Gigabit</u> <u>PoE++</u>
3	Ground point

	Description
PS	The DIO port provides 1x GPS PPS input, 3-CH isolated DI
t	and 4-CH isolated DO
orts	Gigabit PoE++ port can provide both data and electric power to devices.
ng	Chassis grounding point

The DO is followed by open-drain design, i.e., the output voltage is decided by the external power source. We recommend to design the external power source between 5V to 24V. The DI treat 0 to 1.5V voltage input as 0, and treat 5 to 40V voltage input as 1. In Linux, each GPIO is mapped to a virtual folder. And the PPS0 is defined in our official device tree. Please refer to the following table for information on wiring and programming the isolated DIO channels.

DIO & GPS PPS Pin Definition

Pin No.	Definition	1/0	GPIO in Linux	Description
1	DI0_H	I.	pps0_H	GPS PPS input
2	DI1_H	1	gpio443	Digital input channel 1
3	DI1_L	1		Digital input channel 1
4	DO_GND	0		
5	DO0	0	gpio446	Digital output channel 0
6	DO1	0	gpio447	Digital output channel 1
7	DO_GND	0		Digital output GND
8	VDD			
9	DI0_L	0	pps0_L	GPS PPS input
10	DI2_H	0	gpio444	Digital input channel 2
11	DI3_H	0	gpio441	Digital input channel 3
12	DO_GND			Digital output GND
13	DO2	0	gpio448	Digital output channel 2
14	DO3	0	gpio445	Digital output channel 3
15	DI2_L, DI3_L	1	-	Digital input channel 2/

Initialization

sudo -s

Set DO Value

The following example takes DO0 as an example. The GPIO

number for DO0 is

446

sudo -s

Set DO0 to 0

echo 446 > /sys/class/gpio/export # SOM_GPO0

echo out > /sys/class/gpio/gpio446/direction

echo 0 > /sys/class/gpio/gpio446/value

Set DO0 to 1

echo 446 > /sys/class/gpio/export # SOM_GPO0

echo out > /sys/class/gpio/gpio446/direction

echo 1 > /sys/class/gpio/gpio446/value

Read DI Value

The following example takes DI3 as an example. The GPIO number of DI3 is

441

cat/sys/class/gpio/gpio441/value

1 IEEE 802.3at Power over Ethernet Port

The Gigabit PoE ++ port supply power and data on a standard CAT-5 or better Ethernet cable. Acting as a PSE (Power Sourcing Equipment), compliant with IEEE 802.3bt, it has a total power budget of 144W while each port can deliver up to 90W to a Powered Device (PD). PoE automatically detects and determine if the connected device is PoE PD or not before supplying power, making it compatible with standard Ethernet devices as well. There are screw-lock holes (indicated in red) for each port to ensure cables are tightly secured.

Active/Link LED

LED Color	Status	Description				
	Off	Ethernet port is disconnected				
Orange	On	Ethernet port is connected and no data transmission				
	Flashing	Ethernet port is connected and data is transmitting/receiving				
Speed LED			C-MARINE C			
LED Color	Status	Description				
	Off	10 Mbps	│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │			
Orange	Off	100 Mbps	Speed Lin			
	Orange	1000 Mbps	LED LE			

echo 446 > /sys/class/gpio/export # SOM GPO0 echo out > /sys/class/gpio/gpio446/direction echo 0 > /sys/class/gpio/gpio446/value echo 447 > /sys/class/gpio/export # SOM GPO1 echo out > /sys/class/gpio/gpio447/direction echo 0 > /sys/class/gpio/gpio447/value echo 448 > /sys/class/gpio/export # SOM_GPO2 echo out > /sys/class/gpio/gpio448/direction echo 0 > /sys/class/gpio/gpio448/value echo 445 > /sys/class/gpio/export # SOM_GPO3 echo out > /sys/class/gpio/gpio445/direction echo 0 > /sys/class/gpio/gpio445/value echo 443 > /sys/class/gpio/export # SOM GPI1 echo in > /sys/class/gpio/gpio443/direction echo 444 > /sys/class/gpio/export # SOM_GPI2 echo in > /sys/class/gpio/gpio444/direction echo 441 > /sys/class/gpio/export # SOM_GPI3 echo in > /sys/class/gpio/gpio441/direction

The system offers EMI protection with an isolated PCB design. If you are powering the NRU-52S using an isolated power supply, please make sure the chassis grounding point is connected.